The most common means to satisfy these requirements for roof drainage (i.e. guttering) installations is via compliance with the National Plumbing and Drainage Code AS/NZS 3500.3: 2003. Furthermore, in each state and territory it is necessary to satisfy the relevant regulation. For example, the NSW Code of Practice for Plumbing and Drainage (2006) adopts AS/NZS 3500.3: 2003 and associated amendments. (Further information is available at www.deus.nsw.gov.au/water/plumbing.asp).

In the design and detailing of a roof drainage system consideration must be given to a range of the factors such as rainfall intensity, roof catchment area, gutter size/capacity, gutter fall, gutter outlets (sumps, rainheads, nozzles), downpipe size, quantity and placement, overflow consideration, material selection, jointing, etc. **IMPORTANT INFORMATION ON OVERFLOW MEASURES**

For residential roof drainage systems high fronted gutters are a popular aesthetic choice to hide the lower edge of tiles or roof cladding.

Some simple overflow methods that can be employed on high fronted gutters are listed below:

A) Methods related to the design and installation of roof drainage systems:

- Slotted front of gutter – a simple and popular choice which allows for water overflow through the slots visible on the front face of the gutter.
- Specifically located overflows as permitted in the BCA i.e.:
 - Inverted downpipe drop/pop at high points in the gutter but set at a level below the fascia top,
 - Stop ends cut down to a lower level to act as a weir (stop ends weirs could be hidden at the high point of the gutter and designed as part of an expansion joint),
 - Rainheads with overflow weir,
 - Holes, slot, or weir at downpipes;
- Gap between the fascia and the gutter back – a packer is inserted between the gutter back and the fascia; or

Any of a number of other proprietary systems and trade solutions.

B) Methods related to alternative building design methods:

- Unlined eaves – eliminates the issue where the house design suits.
- Gutter installed such that the gutter front is fully below the top of the fascia.
- Design for a higher rainfall intensity, as used for internal box gutters.
- Back flashing – where gutter support brackets allow back flashing installation (e.g. external brackets).

The following illustrations (page 4) show continuous and non-continuous overflow measures that may be used in combination with each other to meet the necessary requirements.

Please note that non-continuous measures may become blocked anywhere along their length, so non-continuous overflow measures may not be sufficient to prevent water from flowing back into a building.

Slotted gutters may also provide an overflow measure, however slots must be of sufficient size. For this reason, slots alone may not be a sufficient overflow measure in all circumstances. When designing a roof drainage system with slotted gutter, consideration should be given to additional overflow measures.

![Typical overflow from slotted gutter.](image)

Gutter shown is not available in all areas.
DESIGN AND INSTALLATION OF DOMESTIC ROOF DRAINAGE SYSTEMS

The detailing and sizing of the selected overflow method/s is normally completed by the designer/installer, but must be adequate for the situation and must meet the relevant performance requirement of the BCA and Australian Standards.

While there may be some variations from state to state, contractors who install guttering systems are generally required to hold an appropriate licence. In NSW, for example, a licence in the category of Builder, Plumber or Roof Plumber issued by the Office of Fair Trading is required and it is an offence to undertake this work without an appropriate licence. The work is required to comply with the appropriate codes and standards.

Statutory warranties normally apply and consumers have a right to lodge a complaint and have it dealt with by the appropriate authority. In NSW, for example, the statutory warranty is 7 years under the Home Building Act.

In the installation of the roof drainage system, particular focus should be given to the following:

- Attention to the use of compatible materials for drainage system components, leaf-guard type system components and compatible fasteners/sealants to connect and seal the components.
- The position of the gutter in relation to the fascia.
- Installation of the specified gutter and downpipes, ensuring that downpipes are installed in the correct locations and numbers.
- Gutter fall, ensuring sufficient fall and that it is in the direction of the downpipes.
- Overflow has been considered and specific details are installed where required (such as when the gutter front is higher than the top of the fascia).

During the installation all debris and loose waste materials (swarf, fasteners, etc.) must be cleaned off at the end of each day and at the completion of the installation to prevent blockages of the drainage system or deterioration of the individual components. Any protective films should also be removed as part of the installation process.

MAINTENANCE OF DOMESTIC ROOF DRAINAGE SYSTEMS

In the longer term, the ability of a roof drainage system to handle overflow will also depend on the regular cleaning of the system. For example the removal of plant or animal matter (leaves, fungal growth, dropping, nests, etc.) and debris from gutters, leaf-guard type systems and the gutter overflow devices to ensure free drainage of water.

To ensure a long life the roof drainage system the maintenance requirements of the roof drainage system should be forwarded to the occupier/owner of the building and should be fulfilled. Adequate maintenance is a requirement of rainwater good warranties.
Information on designing a perimeter drainage system for a domestic roof

Roof drainage systems can be affected by a number of variables and must be designed and detailed by a suitable qualified trade or professional. The design of roof drainage aims to protect people, property and the building. The designed drainage system must be installed under the supervision of a qualified trade or professional. The steps of the design process are illustrated below.

1. Determine average recurrence interval (ARI).
2. Obtain rainfall intensity of site.
3. Work out roof dimensions.
4. Catchment area with slope.
5. Work out area for proposed eaves gutter.
6. Determine catchment area per downpipe.
7. Determine number of downpipes required.
8. Determine location of downpipes and high points.
9. Check catchment area for each downpipe.
10. Determine downpipe size.
11. Determine overflow measures.

Table 1
Average recurrence interval (ARI).

Design rainfall intensities adapted from AS 2180:1986.

<table>
<thead>
<tr>
<th>Location</th>
<th>ARI 20 years</th>
<th>ARI 100 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abydos</td>
<td>199</td>
<td>275</td>
</tr>
<tr>
<td>Albany</td>
<td>142</td>
<td>217</td>
</tr>
<tr>
<td>Broome</td>
<td>252</td>
<td>343</td>
</tr>
<tr>
<td>Bunbury</td>
<td>148</td>
<td>215</td>
</tr>
<tr>
<td>Carnarvon</td>
<td>142</td>
<td>196</td>
</tr>
<tr>
<td>Collie</td>
<td>145</td>
<td>217</td>
</tr>
<tr>
<td>Dampier</td>
<td>231</td>
<td>337</td>
</tr>
<tr>
<td>Derby</td>
<td>254</td>
<td>343</td>
</tr>
<tr>
<td>Geraldton</td>
<td>132</td>
<td>173</td>
</tr>
<tr>
<td>Halls Creek</td>
<td>181</td>
<td>237</td>
</tr>
<tr>
<td>Hamersley</td>
<td>180</td>
<td>244</td>
</tr>
<tr>
<td>Hillside</td>
<td>192</td>
<td>265</td>
</tr>
<tr>
<td>Kalgoorlie</td>
<td>116</td>
<td>180</td>
</tr>
<tr>
<td>Katanning</td>
<td>125</td>
<td>203</td>
</tr>
<tr>
<td>Kununurra</td>
<td>256</td>
<td>347</td>
</tr>
<tr>
<td>Marble Bar</td>
<td>205</td>
<td>287</td>
</tr>
<tr>
<td>Meekathara</td>
<td>111</td>
<td>155</td>
</tr>
<tr>
<td>Mundaring</td>
<td>139</td>
<td>204</td>
</tr>
<tr>
<td>Newman</td>
<td>143</td>
<td>195</td>
</tr>
<tr>
<td>Perth</td>
<td>146</td>
<td>214</td>
</tr>
<tr>
<td>Port Hedland</td>
<td>233</td>
<td>322</td>
</tr>
<tr>
<td>Ray Hill</td>
<td>160</td>
<td>216</td>
</tr>
<tr>
<td>Tom Price</td>
<td>164</td>
<td>222</td>
</tr>
<tr>
<td>Wittenoom</td>
<td>182</td>
<td>245</td>
</tr>
</tbody>
</table>

DESIGN PROCEDURE

The steps in the design process are for a perimeter drainage system using the standard roll-formed rainwater products (gutters) installed at the building eaves. Drainage systems for larger roofs use box gutters at the perimeter and internally. Box gutter systems are thoroughly treated in AS/NZS 3500.3:2003 and HB114:1998.

Install gutters with a suitable fall to avoid ponding and to allow water to easily flow away. Steeper falls are preferred for prolonged life of the gutter. It is assumed that the eaves and gutters will have a gradient of 1:500 or steeper.

1. Decide on the average recurrence interval (ARI). Where significant inconvenience or injury to people, or damage to property (including contents of a building), is unlikely, a minimum ARI can be 20 years. If these conditions are likely, 100 years is recommended.
2. Determine rainfall intensity for the site from Table 1. More data are in AS/NZS 3500.3:2003.
3. Sketch a roof plan showing dimensions in plan view, pitch of roof, layout of ridges and valleys and large roof penetrations.
4. Calculate the catchment area of the roof from the plan. To allow for the slope of the roof, increase the plan area by 1% for every degree of pitch up to 36°. For pitches over 36° refer to AS 3500.3:2003.
5. Get the effective cross-sectional area of the gutter you intend to use from Table 2.
6. Using the cross-sectional area of the gutter on the graph in Figure 1, determine the catchment area per downpipe.
7. Calculate (as a first test) the minimum number of downpipes required for the selected gutter using the equation:
 \[
 \text{Number of downpipes (min.)} \quad \left\{ \right. \quad \text{Total catchment area of the roof} \\
 \text{Catchment area (determined in 6)}
 \]
 Round the number of downpipes up to the next whole number.
8. On the plan, select locations for the downpipes and the high points in the gutters. Where practical, the catchments for each downpipe should be about equal in area.
 When selecting the location of high points and downpipes, consideration should also be given to proximity to high concentrations of water flow (e.g. valley gutters, diversions around large roof penetrations, dormers, etc.). More guidance is given in AS/NZS 3500.3:2003 and BCA.
 Calculate the area of each catchment for each downpipe.
9. With the area of your eaves gutter, check that the catchment area for each downpipe, calculated in Step 8, is equal to or less than the catchment area shown by the graph.
 If a catchment area is too big then you can:
 - Increase the number and size of downpipes;
 - Reposition the downpipes and/or the high points;
 - Choose a gutter with bigger effective cross-sectional area, then repeat the above from Step 6.
10. Decide on the downpipe size. Recommendations in AS/NZS 3500.3:2003 on downpipe sizes. As an approximate guide, refer to Table 2.
11. Consider measures to counter overflow of gutters into the building. Consideration of overflow at high concentrations of water flow may need to be given.
Table 2
LYSAGHT® gutter areas and downpipes.

<table>
<thead>
<tr>
<th>Slotted Effective cross section1</th>
<th>Round (diameter)</th>
<th>Rectangular or square</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHEERLINE® no 8370</td>
<td>90</td>
<td>100 x 50</td>
</tr>
<tr>
<td>RANCELINE® (WA) no 6319</td>
<td>90</td>
<td>95 x 45</td>
</tr>
<tr>
<td>COLONIAL® (WA) no 6906</td>
<td>75</td>
<td>95 x 45</td>
</tr>
<tr>
<td>Square Bead Quad no 5420</td>
<td>75</td>
<td>95 x 45</td>
</tr>
<tr>
<td>Half Round no 7335</td>
<td>90</td>
<td>100 x 50</td>
</tr>
<tr>
<td>Quarter Round no 5605</td>
<td>90</td>
<td>95 x 45</td>
</tr>
</tbody>
</table>

2. Downpipe sizes are based on being fitted to the sole of the gutter.
3. For different downpipe connections refer to a suitably qualified designer for guidance.
4. For steeper gutter slopes refer to AS 3500.3 for guidance.

EXAMPLE
Find the minimum catchment area for each downpipe on a house in Katanning using unslotted SHEERLINE® gutter.

Method
Using the gutter cross sectional area taken from Table 2 (shown across the bottom of the graph) draw a line upwards until it intersects with the Design rainfall intensity (Table 1). Draw a line at 90° to determine the catchment area for each downpipe.

DATA
Design rainfall intensity = 125 (Table 1)
Gutter area = 8370 (Table 2)

SOLUTION (From Figure 1)
Catchment area for each downpipe = 49m²

Notes:
1. This graph assumes -
 a. an effective width to depth is a ratio of about 2:1;
 b. a gradient in the direction of flow flatter than 1:500;
 c. the least favourable positioning of the downpipe and bends within the gutter length;
 d. a cross-section or half round, quad, ogee or square; and
 e. the outlet to a vertical downpipe is located centrally in the sole of the eaves gutter.
2. The required eaves gutter discharge areas do not allow for loss of waterway due to internal brackets.
<table>
<thead>
<tr>
<th>Product</th>
<th>Diagram</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLONIAL® (WA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RANCELINE® (WA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHEERLINE®</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HALF ROUND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUAD SQUARE BEAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUARTER ROUND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOVALINE® Rebate Fascia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LYSAGHT® quality gutters are available in unpainted ZINCALUME® steel and in a range of COLORBOND® steel colours to match or contrast your roof.

- Distinctive style accents traditional homes while providing a unique look for new homes
- Compatible with NOVALINE® Fascia System for quick, easy attachment to the building
- Available in a range of COLORBOND® steel colours to match or complement your roof
- Suitable for steel or tile roofs

ACCESSORIES

- Gutter clip for timber
- Gutter clip for metal
- External or internal mitre
- Stop end plate (left or right)

- Internal bracket
- Universal gutter clip (SSCI)
- Internal end stop (pair) ZINCALUME® & COLORBOND®

- Half round gutter clip
- Half round stop ends ZINCALUME® & COLORBOND®
- Half round External corner ZINCALUME® & COLORBOND®
- Half round Internal corner ZINCALUME® & COLORBOND®

- Gutter clip for timber ZINCALUME®
- Gutter clips for metal ZINCALUME®
- Stop end (pair) ZINCALUME® & COLORBOND®
- Internal or external gutter mitre available as tradework ZINCALUME® & COLORBOND®

- State-of-the-art fascia system
- Integrates perfectly with COLONIAL® (WA), RANCELINE® (WA), Quad and TRIMLINE® gutters
- Replaces traditional timber fascia which reduces painting and maintenance
- Makes fixing gutters quick and easy using spring clips
- Extensive range of accessories available

ACCESSORIES

- Side rafter bracket ZINCALUME®
- Timber bracket ZINCALUME®
- End closer ZINCALUME® & COLORBOND®
- Splice plate ZINCALUME®
- Internal corner ZINCALUME® & COLORBOND®
- External corner ZINCALUME® & COLORBOND®
- 135º corner ZINCALUME®
Finish your roof with the distinctive style of the LYSAGHT® downpipes and accessories. These downpipes and accessories are compatible with the NOVALINE® Fascia System, and with a wide range of gutters.

All LYSAGHT® downpipes and accessories are made from galvanised or ZINCALUME® steel, which means they are strong and made to last.

Most downpipes and accessories are available in unpainted ZINCALUME® steel and a range of COLORBOND® steel colours to match or contrast with your roof. They are compatible with steel and tile roofs.

A wide range of rectangular, square and round downpipes available to complement all building styles. Some dimensions and availability may vary slightly from region to region.

DOWNPIPES

<table>
<thead>
<tr>
<th>Rectangular or square</th>
<th>Round</th>
</tr>
</thead>
<tbody>
<tr>
<td>95x45</td>
<td>75</td>
</tr>
<tr>
<td>100x50</td>
<td>90</td>
</tr>
<tr>
<td>100x75</td>
<td>100</td>
</tr>
</tbody>
</table>

DOWNPIPE ACCESSORIES

- **Astragal/brackets**
- **Pops**
- **Square corner**
- **Round corner**
- **Offsets**
RAINHEADS
Made to order to your specifications

• LYSAGHT® rainwater heads, flashing, tradework and box gutters, are also available made to order. Provide us with a picture, dimensioned drawing or template and we can manufacture for you.

• Refer to the Western Australia product offer for the full range of tradework and flashing products available. Ask your technical sales representative for details.

RAINHEADS

Classic
Standard Sizes
Small: 250 (L) x 300 (W) x 225 (D) mm
Medium: 250 (L) x 375 (W) x 225 (D) mm
Large: 300 (L) x 450 (W) x 250 (D) mm

Tapered Classic
Standard Sizes
Small: 320 (L) x 300 (W) x 200 (D) mm
Large: 450 (L) x 450 (W) x 250 (D) mm

Antique/Colonial
Standard Sizes
Small: 340 (L) x 260 (W) x 170 (D) mm
Large: 340 (L) x 290 (W) x 195 (D) mm

Conical
Standard Sizes
Large: 600 (L) x 500 (W) x 250 (D) mm
Overflow hole: 100mm x 30mm

The Bushranger
Standard Sizes
Small: 250 (L) x 260 (W) x 240 (D) mm
Medium: 350 (L) x 260 (W) x 240 (D) mm
Large: 450 (L) x 360 (W) x 260 (D) mm
Overflow hole: 100mm x 30mm
INSTALLATION ADVICE
Get it right first time with LYSAGHT® products

BRACKET SPACING
When the gutters are attached to NOVALINE® fascia, then the gutter bracket spacing should mirror the spacing of the NOVALINE® brackets (i.e. 600mm & 1200mm), and the gutter brackets should be adjacent to the NOVALINE® brackets.

However, when the gutters are fixed to other fascias then the weight of the water carried by the gutter should determine spacing required - however spacing should not exceed 1200mm maximum.

FALL
Install gutters with a suitable fall to avoid ponding and to allow water to easily flow away. Steeper falls are preferred for prolonged life of the gutter. Refer to the BCA and the Australian Standards for guidance.

METAL & TIMBER COMPATIBILITY
Lead, copper, bare steel and green or some chemically-treated timber are not compatible with this product; thus don’t allow any contact of the product with those materials, nor discharge of rainwater from them onto the product. If there are doubts about the compatibility of other products being used, ask for advice from our information line.

ROOF DRAINAGE SYSTEM DESIGN
Roof drainage systems should be designed and detailed by a suitably qualified trade or professional in accordance with the BCA and the Australian Standards. Particular reference should be made to the correct sizing of gutter; quantity and placement of downpipes; and the provision of appropriate overflow devices. (Page 2-3).

ADVERSE CONDITIONS
If these products are to be used within 1km of marine, severe industrial, or unusually corrosive environments, ask for advice from our information line.

INSTALLATION ADVICE
The roof drainage system should be installed using good trade practices and by a certified installer.

For sealed joints use screws or rivets and neutral-cure silicone sealant branded as suitable for use with galvanised or COLORBOND®/ZINCALUME® steel.

CLEAN UP
Remove all plastic cover strips from product and dispose of correctly.

Sweep all metallic swarf and other debris from roof areas, gutters, downpipes, overflow devices and all other roof drainage components, at the end of each day and at the completion of the installation.

GUTTER MAINTENANCE
The roof drainage system (gutter, downpipes, overflow devices and all other components) must be cleaned out on a regular basis.
GUTTER MAINTENANCE
Getting the most from LYSAGHT® products

1) A typical suburban gutter clogged with leaf litter prior to cleaning.

2) Wear correct protection when cleaning leaves and twigs.

3) When litter is removed, the layer of hardened dirt is revealed below.

4) Rinse the gutter with water to soften and break up the dirt.

5) Use a soft bristle brush and sweep the dirt out. Rinse again.

6) When the gutter has been cleaned, it should look like this.

CLEANING GUTTERS
Twigs, dust, leaves and fungal matter (debris) should be removed regularly from gutters - as failure to do so voids your warranty.

- Sweep debris into a pile using a stiff, soft bristled brush (shovels or hard tools should not be used).
- The whole roof and gutter should then be washed down with a hose, including high ends of gutters (possibly protected by overhangs), rain heads, water spouts and overflow locations.

A well maintained gutter/downpipe will make your rainwater system provide years and years of trouble-free service.
PRODUCT DESCRIPTIONS

• All descriptions, specifications, illustrations, drawings, data, dimensions and weights contained in this catalogue, all technical literature and websites containing information from Lysaght are approximations only. They are intended by Lysaght to be a general description for information and identification purposes and do not create a sale by description. Lysaght reserves the right at any time to:
 (a) supply Goods with such minor modifications from its drawings and specifications as it sees fit; and
 (b) alter specifications shown in its promotional literature to reflect changes made after the date of such publication.

DISCLAIMER, WARRANTIES AND LIMITATION OF LIABILITY

• This publication is intended to be an aid for all trades and professionals involved with specifying and installing Lysaght products and not to be a substitute for professional judgement.

• Terms and conditions of sale available at local Lysaght sales offices.

• Except to the extent to which liability may not lawfully be excluded or limited, BlueScope Steel Limited will not be under or incur any liability to you for any direct or indirect loss or damage (including, without limitation, consequential loss or damage such as loss of profit or anticipated profit, loss of use, damage to goodwill and loss due to delay) however caused (including, without limitation, breach of contract, negligence and/or breach of statute), which you may suffer or incur in connection with this publication.

© Copyright BlueScope Steel Limited 30 April, 2018

WWW.LYSAGHT.COM

Technical enquiries:
steeldirect@bluescopesteel.com or call 1800 641 417

LYSAGHT®, COLORBOND®, ZINCALUME® and ® product names are registered trademarks of BlueScope Steel Limited, ABN 16 000 011 058.
The LYSAGHT® range of products is exclusively made by or for BlueScope Steel Limited trading as Lysaght.